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When experiments are made upon the adsorption of vapors by a porous 
adsorbent, and the quantities found to be adsorbed at a particular tempera
ture are plotted against the logarithms of the relative pressures (observed 
pressures divided by the vapor pressure of the free liquid at the same 
temperature), curves of the general scope of Curve 1, Fig. 1, are obtained. 
Let P be the relative pressure, Q the quantity adsorbed (in any convenient 
unit of measurement); then the lower portion of the curve will be in approx
imate agreement with the familiar Freundlich equation, log P = a log Q 
+ b. At higher values of Q, this relation ceases to hold; the curve becomes 
nearly straight, shows a rather sudden bend at the point marked "A," 
and appears to terminate suddenly, having a finite slope, at "B," where 
P = I , and the system is therefore saturated. However, as I have shown 
in a previous paper/ this sudden termination actually occurs only at tem
peratures below the freezing point of the liquid. Above this temperature, 
the isotherms bend upward when the relative pressure is just less than 
unity, and approach as asymptote the line log P = O, so that no definite 
quantity can be said to be adsorbed at saturation. The dashed line near 
"B ," Fig. 1, represents this behavior on an exaggerated scale. This por
tion of the isotherm is generally ignored. We shall assume that it is due to 
some secondary effect, and that the isotherm of true adsorption runs as 
drawn right up to the point of saturation, "B." This assumption is justi
fied partly because no progress can be made without it in studying the 
phenomena of saturation, and partly because the ultimate capacities of 
the system, as thus determined for various substances and at different 
temperatures, show many regularities, and evidently correspond to some
thing real. 

There appears to have been put forward no satisfactory interpretation 
of the characteristic form of the adsorption isotherm, especially of the man
ner in which it approaches saturation. Most theories start by assuming 
a particular isotherm as experimentally given, and attempt to derive there
from all other isotherms. L,angmuir's2 simplest equation gives isotherms 
showing points of inflection and definite ultimate capacities, but the latter 
are reached only at infinite pressures. Williams3 has derived the equation 
log a/c = Ao-Aia, where a is the amount adsorbed, c the concentration 
in the gas phase, Ao and A1 are constants. For moderate values of a, 

1 Coolidge, T H I S JOURNAL, 46, 609 (1924). 
2 Langmuir, ibid., 40, 1361 (1918). 
3 Williams, Proc. Roy. Soc. (London), 96A, 287 (1919). 
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such that Aid greatly exceeds log a, this is in agreement with the straight 
portion already noted, just to the left of "A," Fig. 1. The equation does 
not claim to hold up to saturation. 

I t strikes me that the suddenness with which saturation is reached is very 
surprising. When the vapor-pressure curve of a solid or liquid, plotted 
against temperature, or that of a solution plotted against concentration, 
shows a sudden change in slope, the physical chemist looks for the appear
ance of a new phase. In the case of an adsorption pushed beyond satura
tion, no one doubts that the excess of vapor introduced condenses to or
dinary liquid (except below the freezing point). But it is hard to see how 
this can be considered a new phase, since it is generally believed that the 
adsorbed vapor itself, or at least its superficial layers, are already in the 
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form of the liquid, evaporation being hindered by the operation of some 
force caused by the proximity of the adsorbent. It is not easy to under
stand why this force should suddenly cease to act. Furthermore, if satura
tion means the formation of a new phase, it should be possible by careful 
work to delay its appearance and to produce a supersaturated adsorption 
(analogous to a supersaturated solution). This I have been able to do1 

below, but not above, the freezing point, which apparently proves that 
while the solid appears as a new phase, the liquid does not. A possible 
explanation of the suddenness of saturation, which involves neither of these 
difficulties, will be suggested in this paper. 

The idea that adsorbed vapors condense to something resembling the 
normal liquid state is based primarily on the experimental fact that the 
quantities of different vapors necessary to saturate a given adsorbent are 
nearly the same as those required to produce, when condensed, a fixed 
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volume of normal liquids. This will appear from Table I, taken from my 
data1 for activated coconut charcoal. In this table, the second column 
gives the volume of normal liquid, in cubic centimeters, which would be 
produced at 0° by the quantity of the indicated vapors which suffices to 
saturate 1 g. of charcoal at 0°. The third column, which will be needed 
later, gives the apparent specific volume of a similar charcoal, as measured 
by Harkins and Ewing with the corresponding liquids; the fourth is the 
sum of the second and third, and the fifth is the compressibility of the liquid. 
(This has been taken where possible from 0 to 500 atmospheres at 0°; 
but in some cases where data were lacking, the value at 20° from 300 to 
500 atmospheres has been substituted as being roughly comparable.) 

TABLE I 

VOLUME AND COMPRESSIBILITY RELATIONS 
i 

Hg 
H2O 
CCl4 

CHCl3 

CS2 
CH3OH 
HCOOC2H5 

CeHe 
CH3COOCH3 

(C2Hs)2O 

2 

(0.000) 
.424 
.435 
.442 
.450 
.450 
.454 
.467 
.490 
.494 

3 

1.156 
0.543 

.502 

.486 

.498 

.472 

4 

(1.156) 
0.967 

.944 

.936 

.965 

.962 

5 

4 
41 
73 
70 
66 
80 

67 
73 

107 

It is strongly suggested that the adsorbent presents a fixed volume, 
rather than a fixed surface, where adsorption can occur, and that when this 
volume is exactly filled the system is saturated, showing the same vapor 
pressure as the free liquid. The surface layer is to be considered as iden
tical in state with that of the free liquid, and to be under no additional 
forces. Such forces appear as soon as the amount of liquid present is 
insufficient to fill the adsorption space. If, in spite of being under these 
forces, the superficial liquid layer may be assumed to preserve its identity 
of state with that of the free liquid, then the work which an evaporating 
molecule has to do against the additional forces producing adsorption 
may be calculated, according to kinetic theory, by the equation <p = 
—kT In P, in which <p is the work desired, k the Boltzmann constant, T 
the absolute temperature, and P , as before, the relative pressure. The as
sumption seems to me a precarious one, but as it is generally made or im
plied in the development of theories of this class, we shall retain it unless 
it proves untenable. 

Concerning the nature of the forces against which this work is done, two 
hypotheses are current. According to one, they are simply the cohesional 
attraction of neighboring adsorbed molecules, supposed to act with more 
than normal vigor because of the concavity of the liquid surface. I t is 
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well known that the relative pressure over such a surface should be given 
by the equation In P = —2<rv/rRT, in which o- is the surface tension, v 
the molecular volume, and r the mean radius of concavity. If we agree 
to assume that this effect is the sole cause of adsorption (that is, that none 
of the superficial molecules experience any direct attraction by the ad
sorbent), then it is still not possible to predict the form of any isotherm, 
since we do not know how the radius of concavity should vary with the 
degree of saturation. But if we make the additional assumption that the 
angle of contact between liquid and adsorbent is always zero, then we can 
use a single experimental isotherm as a basis for predicting others. For 
the radius r should be a function solely of the volume actually occupied 
by liquid (for a given specimen of adsorbent). The contour of the liquid 
surface is determined by the condition that its area, plus that of the film 
covering projecting portions of the adsorbent, must be a minimum consis
tent with the enclosure of a specified volume; these conditions contain no 
reference to specific properties of the liquid, or to temperature (except in so 
far as the adsorbent itself expands, which must be very little). Assuming 
the liquid to have its normal density, the relationship between radius and 
volume can be found empirically from a single isotherm, and the theory 
tested by seeing to what extent points on other isotherms can be predicted. 
A few examples will show how far from successful it proves. 

Consider first my data4 for activated coconut charcoal, taking benzene, 
the most carefully studied vapor, as standard. When, at 0°, enough 
benzene has been adsorbed to fill a space of 0.2 cc. with subcooled liquid at 
normal density (about half the ultimate capacity), the pressure of the sys
tem is 0.0055 mm., so that —log P = 3.68. Taking a = 32 and v = 86.9, 
we get r = 2.89 X 10~8 cm. Overlooking the fact that this radius is al
ready of molecular magnitude, let us use it to predict the relative pressure 
under different conditions, but always with enough vapor adsorbed to fill 
0.2 cc. with normal liquid at the temperature in question. 

Substance Benzene Benzene Carbon disulfide Ether Water 

Temperature, 0C. 99 150 0 0 0 
—log P , calculated 1.82 1.19 2.65 2.51 1.80 
—log P1 observed 2.74 2.44 2.60 4.0 0.26 

It has been supposed that the capillary condensation theory under dis
cussion may hold better in the case of inert adsorbents like silica gel. 
Suitable data for a test are given by McGavack and Patrick.6 Inter
polating from their Fig. 8, we find for a volume of 0.1 cc. of sulfur dioxide 
at 0°, that —log P = 1.54, whence, using their data for a and v, r is found 
to be 3.16 X 10~8. On this basis, the calculated relative pressures should, 
at —80° and at 100°, have the negative logarithms 2.99 and 0.47, instead 

4 Ref. 1, p. 611. 
6 McGavack and Patrick, THIS JOURNAL, 42, 946 (1920), 
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of the observed 1.71 and 1.16, always for 0.1 cc. of liquid sulfur dioxide. 
As in the system benzene-charcoal, it is evident that the actual tempera
ture coefficient is much less than that demanded by the theory. 

Since the relative pressure for equal volumes increase with the tempera
ture, the volumes for equal relative pressures must decrease with rising 
temperature. In this fact, McGavack and Patrick see confirmation of 
the capillary condensation theory. Owing to the pull of the concave 
meniscus, they reason that the liquid must be in a state of negative pressure, 
under which it will be distended the more, the higher is the temperature 
and in consequence the compressibility. The volume as calculated from 
the normal liquid density will, therefore, be smaller than that actually 
occupied, by an amount increasing with the temperature. The actual 
volume occupied they believe to be the same at all temperatures, for a given 
relative pressure. However, this last idea is untenable; the relative pres
sure for a given volume must have, in general, a temperature coefficient, 
since it is given by an equation which contains not only r, which is in
dependent, of temperature, but also a, v and T, which vary with the 
temperature. As we have noticed, the effect of these variations alone, 
neglecting any changes in compressibility, gives a theoretical change of P 
with T for constant volume, and therefore of volume for constant P, which 
greatly exceeds observed values. The correction advocated by McGavack 
and Patrick would only increase the discrepancy. These authors believe 
that the ordinary relation between P and r, as given, is not valid for very 
small values of r. This seems probable, but there is no reason to suppose 
that the quantities a v, and T cease to be involved, and therefore to confer 
a temperature coefficient upon P. 

Further objections to the ideas of McGavack and Patrick suggest them
selves. The negative pressure ought not to increase with temperature, 
as they believe, but to decrease, in proportion to a, since c measures the 
direct cause of the negative pressure—the tendency of the surface to con
tract. Their device of dividing the calculated volumes of liquid by a frac
tional power of a, in order to correct for distension, is clearly illogical, for 
the distension cannot be the same fraction of the volume at all stages of 
adsorption. At saturation, no distension should occur, and the calculated 
volumes, without correction, are actually found the same at all tempera
tures, a fact much stressed by the authors. If the volumes are corrected 
in the given manner, they will, of course, no longer coincide at saturation. 

Clearly the capillary condensation theory cannot claim among its merits 
any ability even to approximate the facts of experiment. Such approxi
mation might presumably be secured by introducing suitable ad hoc 
assumptions concerning angle of contact, failure of the liquid completely to 
fill the pores, delay in reaching equilibrium, or the like; but by these means 
any other theory could be equally well established. It seems to me more 
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reasonable to conclude that the principal cause of adsorption lies not in 
the surface forces of the liquid itself, but in another class of forces, less 
influenced by temperature changes and more by the specific nature of the 
components of the system. This brings us to the second, or adhesion 
hypothesis, according to which every adsorbed molecule, including those 
about to evaporate from the liquid surface, is under the direct influence 
of the adsorbent. The theory has been extensively developed by PoI-
anyi.6 He assumes that the force upon each adsorbed molecule is specific 
as to the chemical nature of the molecule, but otherwise depends only 
upon its position relative to the adsorbent, and neither upon the tempera
ture nor upon the proximity of other adsorbed molecules. The adsorbed 
liquid obeys its ordinary equation of state; it has its normal density at the 
surface layer, whether the system is saturated or not, and inferior layers 
are denser by reason of the compression due to the "weight" of those above. 
The adsorption space can be considered as the seat of a field of force, the 
potential of which at each point is the work which the adsorbent does upon 
a molecule moving to this point from infinity. The surface layer being 
normal, this potential is to be calculated as before by the equation <p = 
—k T In P, P being now the relative pressure observed when the system 
has been brought to that degree of saturation which causes the surface of 
adsorbed liquid to pass through the point in question. Actually there is 
no method of recognizing particular points in the adsorption space. How
ever, at a given degree of saturation, all points in the liquid surface must 
have the same potential, which can therefore be considered as a function 
solely of the volume enclosed between this surface and that of the ad
sorbent itself. What the nature of this function should be is not predicted 
by the theory. I t can, however, be empirically determined from a single 
isotherm, the volumes being estimated in the first instance by assuming the 
normal liquid density. (A better approximation can be made.) The func
tion will evidently have the same form as Curve 1, Fig. 1, with suitable 
changes of scale. The potential will be found to vanish at a definite vol
ume, with a finite derivative with respect to the volume. 

Now, at first sight, this seems impossible. No force is known which 
acts between two bodies according to such a law that its potential vanishes 
at a finite distance and with a finite space derivative. All known poten
tials vanish asymptotically at infinity. If the surface of the adsorbent is 
nearly plane, the volume of liquid adsorbed should be roughly proportional 
to the distance separating its surface from the adsorbent, and the poten
tial at its surface should be an asymptotically vanishing function of its 
volume. But if the adsorbing surface is sharply concave, the volume will 
itself be a rapidly converging function of the distance, and the ratio of 
potential to volume may be always finite. 

6 Polanyi, Verh. deut. Phys. Ges., 18, 55 (1916). 
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By way of example, let us calculate the potential as a function of the 
volume, in the particular case of a spherical cavity of radius A, every mole
cule within which is attracted by each element d2u of the wall surface with 
a force d2F inversely proportional to the cube of the distance. In Fig. 2, 
M represents the position of the molecule, N is any point of the wall, 
and s, x, M, L, are distances as indicated. Let the attraction of JV for the 
molecule at M be d2F = ks~H2w. 

Fig. 2. 

Owing to the symmetry of the figure, only the x-component of this force 
will contribute to the ultimate result. L,et this be d2Fx = khS~H2w. 
In the figure, the shaded band represents an annular element of wall sur
face, including JV, bounded by the intersections of the planes X = X, 
and X = X + dx, and possessing the area dw = 27rAdx. Its attraction 
for the molecule will evidently be dFx = &LS~4dw = 27rA&LS-4dx. 

The potential at M is the sum of the elements of potential contributed 
by all the annular elements of wall surface, each of which is to be found by 
integrating the attraction by the distance, from infinity to M. (The 
molecule is supposed to enter the cavity along the X-axis through narrow 
channel, too small to prevent treating the wall as a perfect sphere.) For 
the element da> of potential contributed by the wall element containing JV, 
we find (noting that S2 = L2 + A 2 - X 2 = M2 + A 2 - 2 M X ) : 

&<p = 27rA&dx 
LdL 7TA&dx 7TAfedX 

L2 + A* (L2 + A 2 - X2)2 

Finally, integrating this with respect to x, from 
whole potential 

( M2 M4 

M2 + A2 2MX 

A to A, we get for the 

TA.k , A + M 
(f, = In 

Now, this is also the potential for all other points whose distance from 
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the center is M. But the locus of these points is a sphere, enclosing between 
itself and the walls the volume |IT(A3 —M3). We may, therefore, elimi
nate the parameter M and obtain the potential as a function of the volume. 
The function has the form of Curve 2, Fig. 1. (For convenience in com
putation, the potential and volume have been reduced to abstract numbers 
by dividing out the dimensional constants; the abscissas are <f>/irk and the 
ordinates are 100 X F X 3A71^3-) For small adsorption, when A — M < < A , 

the volume may be expressed as V = 47T(A — M)A2, and the potential as 
2A 

7T& In Its negative is therefore a linear function of the logarithm 

of the volume, in agreement with the Freundlich equation for the isotherm. 
Other relations between potential and volume, of generally similar 

character, can be obtained by changing the size or shape of the cavity, or 
the exponent in the law of force. The latter change will destroy the valid
ity of the Freundlich equation as the limiting case. But this is hardly an 
objection, since at very low concentrations the presence of liquid is doubt
ful ; the fact that the inverse cube law of force does lead to the Freundlich 
isotherm is probably a coincidence, and cannot be regarded as proof that 
it is the correct law. 

Curves of the class under consideration differ from observed isotherms 
in one fundamental respect: they terminate abruptly at finite potentials 
and volumes, instead of reaching zero potential at finite volumes. Phys
ically, this means that the smallest potential which exists anywhere inside 
a cavity is greater than zero, since all places within the cavity are under 
the influence of the walls. Thus, for the case just calculated, the minimum 
potential (at the center of the sphere) is 2irk, and for any relative pressure 
corresponding to a lower potential, the cavity will remain completely full. 
If an inverse fourth-power law be assumed for the same cavity, we get 

_ Airkh _ 4-n-k A . M2 , M4 \ 
* ~ 3(A* - M«) ~ SlV + A*+ I*+ ••••) 

and the minimum value of the potential is 47T£/3A. NOW, an actual ad
sorbing body should not be supposed to contain cavities of exactly uniform 
dimensions (with the possible exception of crystalline adsorbents like 
chabazite). All possible sizes and shapes must be expected to be present. 
At saturation, they will all be full; as the pressure falls, they will begin to 
empty successively, each at the moment that the pressure corresponds with 
its particular minimum potential. The observed isotherm will be a kind of 
average of the isotherms of all the cavities, and its form will depend 
upon the manner in which the total volume is distributed 'among the 
different kinds of cavities. Since this volume is finite, there must exist a 
certain volume of single cavity, than which cavities having a greater vol
ume occur much less frequently. As a highly arbitrary, but instructive 
device, let us suppose that all the cavities are spherical, and so distributed 
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that among the larger cavities their number decreases as the fifth power 
of their radius, and their combined volume as the square. That is, if 
6.N be the number of cavities having radii between A and A + dA, then 

, , . 3ndA 
A N = A S 

where n is a constant. Taking the fourth-power law expression for <p, 
as just given, we find for the empty volume of a single cavity correspond
ing to a given potential, the value 

3 

v.-
4 , 4xA3 Z1 4rk\2 

<*-£) 
The empty volume of all cavities of radius between A and A + dA will be 

2 dA 
—j-' and the total empty volume will be found by integrating 

this expression from infinity to A = 4TT&/3<£>, which is the smallest cavity 
that will empty at all. The result is Smp/lOrk; in this case, therefore, 
the isotherm near saturation will be a straight line of finite slope, as ob
served, continuing to zero potential. 

The analysis just presented cannot lay claim to even approximate 
rigor, since there is no reason to suppose that either the dimensions or the 
distribution of the cavities in an actual adsorbent are as regular as as
sumed. However, I believe it is useful as showing that it is not impossible 
to reconcile the discontinuity observed at saturation, with the hypothesis 
that the adsorbed vapor is present in the liquid state, without assuming 
the presence of forces acting as discontinuous functions of the distance. 
The effect is rather to be ascribed to a discontinuity in the relationship 
between space available for adsorption, and proximity to the adsorbent 
surface. The fact that the discontinuity at saturation is not absolutely 
sudden, may perhaps be explained as due to the action of the outside, 
plane or convex, surface of the granules of adsorbent. The isotherm of 
such a surface should show no saturation, but should approach asymptot
ically the vapor-pressure line of the liquid, as indicated by the dashed line 
in Fig. 1. But the outside surface is so small in comparison with the in
terior, that its contribution to the whole isotherm would be recognizable, 
if at all, only as a correction term. There is some evidence that this cor
rection term becomes more important when the convex surface is increased 
by powdering the adsorbent. Thus, Gustaver7 and Williams8 report 
more transition curvature at saturation than my curves display. Gus
taver worked with powdered charcoal; Williams does not give the state of 
his charcoal. On the other hand, Lowry and Hulett9 reduced their 
charcoal to 0.001 mm. without producing transition curvature. 

7 Gustaver, Kolloidchem. Beihefte, 15, 185 (1922). 
8 Williams, Proc. Roy, Soc. Edinburgh, 37, 161 (1917). 
9 Lowry and Hulett, T H I S JOURNAL, 42, 1411 (1920). 
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It remains to discuss the effects of temperature on adsorption. This is 
most conveniently studied by plotting isosteres, or vapor-pressure curves 
of systems of constant composition. If log p (actual, not relative pressure) 
is plotted against reciprocal temperature, almost perfectly straight lines 
are obtained. If the equation of Clausius and Clapeyron is applicable, 
the negative slope of these lines is proportional to the heat of adsorption. 
I can see no reason to doubt the validity of this principle. The fact that 
the condensed phase is capable of varying its composition is no obstacle, 
for the Clausius-Clapeyron equation unquestionably applies to solutions 
which are thermodynamically indistinguishable from adsorptions. Never
theless, doubt and confusion appear to exist, whether and under what con
dition the principle may be extended to adsorption systems, and a brief 
discussion seems relevant. 

Freundlich10 states that it is applicable in case the heat of adsorption is 
measured under such circumstances that the amount adsorbed is practically 
unchanged. Williams11 points out the difficulty in conceiving a "heat of 
adsorption" when nothing is adsorbed. The heat required to elevate the 
temperature of the system, while the pressure is so adjusted as to prevent 
any change in composition, is evidently merely a specific heat. In the same 
paper, "following Donnan in an unpublished paper," Williams advances 
the idea that the Clausius-Clapeyron equation should hold for heats 
measured isothermally and under equilibrium pressure, provided the ad
sorbent does not change its surface during the adsorption. In comparing 
the heat measurements of Titoff12 with the heats calculated from the same 
experimenter's isotherms, he finds the former systematically greater. A 
part of the discrepancy, Williams believes, is due to the fact that the gas 
entered Titoff's calorimeter at greater than equilibrium pressure. A 
residual discrepancy appears to him as proof that the charcoal surface 
increases during adsorption, evolving a quantity of heat not taken account 
of by the Clausius-Clapeyron equation. This increase is conceived as 
strictly reversible, and the energy change involved must be added. 

In this reasoning I am unable to concur. No condition is involved in 
the proof of the Clausius-Clapeyron equation which is not admirably met 
by a charcoal-vapor system, as the following analysis will show. Let us 
postulate a thermodynamic system the state of which is completely de
fined when two variables, which may be chosen as pressure and tempera
ture, are given. Then, for any reversible infinitesimal displacement the 
increase in the energy of the system will be dE = TdS-pdV, where dS 
is the entropy increase and p is the external pressure. At the same time, 
any kind of internal change, including a change of surface, may occur. 

10 Freundlich "Kapillarchemie," 3rd ed., p. 181. 
11 Williams, Proc. Roy. Soc. Edinburgh, 38, 23 (1918). 
12 Titoff, Z. physik. CUm., 74, 641 (1910). 
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Such changes must be reversible, since otherwise, the system as a whole, 
would not behave reversibly. They cannot perform any outside work, 
for if they did, this work would have to take the form of a reaction against 
some outside generalized force, and the system would be found to be sen
sitive to changes in this force in addition to pressure and temperature. 
They are, therefore, of no thermodynamic significance. 

By well-known methods we obtain from the last equation the relation 

\bTjV \bVjT T\dVjl <T 

in which dg is the heat absorbed. This is certainly applicable to the special 
case of a system consisting of definite masses of charcoal and vapor, the 
total volume being just greater than that of the charcoal alone, so that the 
composition of the whole system is essentially that of the adsorption phase. 
Such a system is found to be completely definable in terms of temperature 

and pressure. ( ^=, 1 is evidently the slope of the isostere, for constancy 

of volume implies constancy in concentration of the adsorption phase. 
On the other hand, if the volume changes isothermally, vapor will be de-
sorbed in quantity sufficient to fill the new space (the volume change of the 
adsorption phase during this process may be neglected), and the ac
companying heat absorbed will be the heat of adsorption per mole (X) times 
the concentration (moles per cc.) of the vapor at the given pressure, which 
may be taken as equal to piRT. We therefore obtain the equation 

^ (isosteric) = p\/RT*. or 

X ~ RT ^f R SUTf) 

We conclude that the isosteres should agree with the measured heats 
in accordance with the usual equation, and that a departure, due to pos
sible changes of adsorbent surface, is no more possible than is a departure, 
in the case of liquids, due to the various internal processes (ionization, 
solvation, polymerization, etc.) which may be supposed to take place in 
them. 

To return to the first cause suggested by Williams as partly responsible 
for the observed discrepancies, it must be admitted that heats of adsorption 
are not measured reversibly. The gas enters the calorimeter at an un
known pressure, higher than that of equilibrium. Now, the heat of ad
sorption in the sense defined is the "external" heat; it contains not only the 
total energy difference between the initial and the final states, but an 
additional term taking account of the work done by everything outside 
the calorimeter upon everything within. Since the total energy of a per
fect gas is independent of its pressure, the internal energy change during 
adsorption will not depend upon the initial pressure of the gas, provided 

file:///bTjV
file:///bVjT
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that the temperature at which it enters the calorimeter is properly con
trolled. As for the outside work term, each element of gas An may be 
thought of as having the pressure p' at the instant it enters the calori-

dV 
meter; the work done by the environment"will be p'dV = p' -3- An = 

RT An; and the total work will be simply RTn, whatever may have been 
the pressure. The observed heat, therefore, will not differ from the true X. 
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It appears, then, that both of the arguments of Williams are thermo-
dynamically unsound, and that the explanation of the excess of measured 
over calculated heats must be found elsewhere. If things were so arranged 
that the gas entered the calorimeter with high velocity, its kinetic energy 
would of course reappear as heat. Calculation shows that with the usual 
forms of apparatus this effect is negligible. Can the whole difference be 
laid to experimental error? I think not. The isosteres plotted from my 
data4 for organic vapors on charcoal are so regular and extend over so great 
a range, that it is hard to believe that their slopes are far from correct. 
In a previous paper13 in collaboration with A. B. Lamb, I gave direct ther
mal measurements for many of the same systems, which showed no internal 

13 Lamb and Coolidge, THIS JOURNAL, 42, 1146 (1920). 
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evidence of being as much as one per cent, in error. Fig. 3 shows to what 
extent the two sets of data are in agreement. Circles show directly meas
ured heats, at average concentrations indicated by the scale of abscissas. 
Crosses show heats read from the slopes of the isosteres for the indicated 
concentrations. I t will be seen that, as in the data of Titoff, the observed 
heats generally exceed the calculated, although by a smaller amount. 
Now, the charcoal used for thermal measurements had been outgassed at 
350 °, while that used in determining the isotherms had been raised to 
550°. This can, however, hardly be the cause of the difference; experi
ments with benzene and water vapors on differently treated charcoals 
showed that while the isosteres were slightly shifted, their slopes were 
unchanged. A more plausible explanation is as follows. 

In measuring heats, no special precautions were taken to exclude traces 
of air. I t is known that such traces greatly retard the establishment of 
equilibrium during the first stages of adsorption, and become less in
fluential as saturation is approached. The ultimate capacity reached is 
hardly affected. Now, if the first portion of gas is added in the presence 
of impurities, less heat might be evolved during an hour, say, than if the 
same amount of pure gas had been used. But when the charcoal is ulti
mately saturated, the total evolution of heat should be the same, and 
therefore that observed during the later stages might be greater than nor
mal in the presence of impurities, since it would contain a portion of the 
heat properly belonging to the first stages, whose appearance had been 
delayed by the inhibiting effects of the impurities. A discrepancy be
tween observed and theoretical heats, if caused by such conditions, would 
be negative at low concentrations, zero at some intermediate point, and 
positive near saturation. Isotherms for low concentrations at 0° cannot 
be obtained, and comparisons are limited to the later stages of adsorption. 
Inspection of Fig. 3 shows a marked tendency for the discrepancies to 
increase with rising concentration, and a rough extrapolation suggests that 
they might indeed change sign at lower concentrations. 

Whatever may be the cause of the discrepancies, the agreement is suffi
ciently close for a first approximation. Both heat and pressure measure
ments are evidently entitled to be accepted as free from gross errors, and 
as furnishing additional confirmation (if any were needed) of the validity 
of the equation of Clausius and Clapeyron. Furthermore, the slight 
dependence of the heat of adsorption upon temperature (as evidenced by 
the straightness of the isosteres) is powerful support for the view stated 
above, that adsorption does not much depend upon anything with so great 
a temperature coefficient as surface tension. 

The origin of the heat evolved on adsorption has been the subject of 
discussion. In the paper already cited13 Professor I,amb and I advanced 
the idea that it can be regarded as consisting of two parts: first, the or-
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dinary latent heat of condensation of gas to liquid, and second, the heat 
due to the further action of the adsorbent upon the liquid. The second 
part, which we termed "net heat of adsorption," alone interested us. 
A little thermodynamics shows that it bears to the temperature coefficient 
of the relative pressure, the same relation that the total heat bears to that 
of the absolute pressure; thus, if / be the net heat, then14 

7 — _ 7? d In P _ _ _ / din p _ d In pp\ 
Kd(l/T) ~ K\d(l/T) d(l/T)J 

where pm is the vapor pressure of the liquid. Graphically, it is given 
by the difference in slope between the isostere and the vapor-pressure line 
of the pure liquid, plotted on the same scale. We found that it is nearly 
the same in magnitude for different liquids, when referred to equal bulk 
of liquid, and that the residual differences can apparently be correlated 
with differences in the total heats of compression which equal volumes of 
these liquids would evolve when put under a pressure of 37,000 atmos
pheres, as calculated from the expansion coefficients. Assuming that the 
attractive forces give rise to a unilateral pressure in the liquid film which 
causes volume and heat changes equal to those which would be produced 
by an equal hydrostatic pressure, we came to the conclusion that such high 
pressures actually exist, and that the net heat of adsorption is merely a heat 
of compression. 

There is apparent confirmation of the highrpressure theory in the work of 
Harkins and Ewing.16 They find that the apparent density of certain 
active charcoals, as determined by immersion in liquids, increases with the 
compressibility of the liquid used, as though the liquid were highly com
pressed in the pores. This observation is confirmed by my values for the 
amounts of different liquids required to saturate my charcoal, and there
fore presumably just filling its pores. When reduced to volumes of liquid 
at normal density, these amounts increase with the compressibility of the 
liquid, suggesting that the real density of the adsorbed liquid is that corre
sponding to a high pressure. In so far as the charcoal used by Harkins and 
Ewing is comparable to mine, the sum of their values for apparent specific 
volume of charcoal, and of mine for apparent volume adsorbed at satura
tion, should be constant. How far this is the case will appear from Table I. 

However, there are grave obstacles, both theoretical and experimental 
in nature, which must be overcome before these ideas can be accepted as 
satisfactory. To consider first the former, we must note that heat of 
compression, in the thermodynamic sense, is heat evolved when a fluid is 
compressed by some external agency. It is impossible to apply thermo
dynamic reasoning to compression caused by internal forces without en-

14 This equation was derived by KirchhofT for the case of solutions, in Pogg. Arm., 
104 (1856), Ges. Abh. 492. 

15 Harkins and Ewing, T H I S JOURNAL, 43, 1787 (1921). 



July, 1926 ADSORPTION ISOTHERMS 1809 

countering the kind of difficulty which has just been discussed in con
nection with the theory of Williams. Furthermore, the heat of compres
sion is by no means a measure of the work done by the compressing force, 
but represents only the difference between the work so performed and the 
energy retained by the fluid in potential form; it may be positive, nega
tive, or zero. In the case of a liquid attracted to an adsorbing surface, 
the only outside agency acting upon any given layer of the liquid is the 
"weight" of the superior layers. That such a "weight" effect exists is 
apparently indicated by the following experiment, which is typical of the 
behavior of inorganic liquids, which I am now studying. 

To the empty charcoal add a quantity of vapor much less than that necessary to 
saturate it, and observe the pressure at constant temperature, say 100°. Equilibrium 
seems to be reached within a few minutes, but if the experiment is prolonged for 20 or 
30 hours, a lower pressure will result. Now empty the charcoal and add a much greater 
quantity of vapor, which will necessitate the use of a lower temperature. Let it settle 
for a few hours, and then return to 100° and allow the vapor in excess of the amount 
first used to escape. The pressure will be found to be much lower than even the lowest 
pressure observed in the first experiment, although the time elapsed has been less. 
Evidently, the presence of the excess of vapor has accelerated the penetration of the 
first instalment, presumably by exercising a pressure or "weight" upon it. 

If we think of the liquid as being added in successive instalments to the 
previously bare adsorbing surface, the weight of each instalment, and the 
consequent increase in pressure upon all previous instalments, will di
minish as we get further from the surface, and will vanish when we reach 
saturation. Now, when a quantity of liquid is compressed, the heat 
evolved will be proportional to its specific heat of compression, its volume, 
and the increase in pressure attained. Since no liquid is originally present, 
the addition of the first instalment can compress nothing and produce no 
heat of compression. Subsequent instalments will find increasing quan
tities of liquid available to be compressed, and will, therefore, cause the 
evolution of increasing quantities of heat of compression, until the point is 
reached at which the decrease in weight of the successive instalments over
balances the increase in volume of liquid susceptible of compression. If 
the net heat of adsorption is truly a heat of compression, it should be zero 
at zero concentration, and rise to a maximum at some higher concentration. 
Actually, it has its greatest value at zero concentration, and falls contin
uously with rising concentration; but at saturation it still has a finite value. 
It must, therefore, contain an additional term, besides heat of compression. 

I t is not difficult to see what this term must be. When a quantity of 
liquid "falls" upon a bare adsorbent surface, much potential energy is set 
free, since the liquid during its approach must be acted on by powerful 
forces. This energy will be converted into heat, and if the process is 
isothermal it will be quantitatively transmitted to its surroundings (in 
addition to that due to the work done by the atmosphere), except that a 
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small portion may be retained if the heat capacity of the system is increased 
by the process. However, if some liquid is already present, a part of the 
work done by the adsorbent upon the new liquid will be used in compressing 
the old, and the heat of compression evolved thereby will not in general 
be equivalent to the work absorbed. We may expect, therefore, that the 
observed net heat of adsorption will be closely equal to the work done by 
the attraction of the adsorbent, only during the initial stages of the ad
sorption. On the other hand, at saturation the work done (the potential, 
referred to a mole instead of a single molecule) vanishes, and the net heat 
of adsorption (heat of wetting) may be regarded as solely heat of compres
sion. This appears paradoxical, for it is hard to see how there could be 
any compression change at saturation. The difficulty is of the same char
acter as that concerned with the discontinuity in the slope of the isotherm 
at saturation. If we agree that the potential has a finite derivative at 
saturation, the proposition may be demonstrated as follows. 

Let iVo be the total number of moles of a given vapor which can be ad
sorbed by a particular adsorbent at a- definite temperature, and let p be 
the reciprocal of the molecular volume of the corresponding liquid at the 
same temperature and no pressure. Let the molar potential be such a 
function of the volume not filled by adsorbed liquid, that near saturation 
dp/dp = K. When the system is saturated, v is zero, and the potential 
and the hydrostatic pressure will vanish at the surface of the liquid. At a 
certain slightly lower surface, the potential will have a value different from 
zero, namely, A<p = KAv, Av being the volume enclosed between the two 
surfaces; at the same surface the hydrostatic pressure, due to the weight 
of the intermediate liquid, will have the value Ap = pKAv. Now sup
pose the intermediate liquid removed; the amount removed will be AiV 
= pAv. Since the pressure due to this layer is now removed, the remain
ing liquid will expand by the amount V^pKAv, where Vo is the total 
volume of adsorbed liquid (supposed large in comparison to Av), and /3 
is its mean compressibility in the adsorbed condition. The space left empty 
will be (1— pK(3Vo)Av, and a new surface will form at a depth correspond
ing to the potential (1 — pKfi Vn)KAv. Recalling the relation between 
potential and relative pressure, we find for the latter under these condi
tions, —RT In P = (l-PKpVB)KAv. 

Let us now warm the system, without permitting vapor to escape, 
until it becomes saturated. Let A r be the necessary increase in tempera
ture; then, since the new relative pressure is unity, we may write for its 
mean temperature coefficient over the particular range, 

din P lnl - ( - InP) = 1 - pKgVo Av_ 
d r AT RT AT 

But the reason that the system has become saturated is that the adsorbed 
liquid has expanded so as to fill the whole adsorption space. If a be its 
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mean coefficient of expansion, this means that VoctAT = (1—pKfiVo) AV. 
Eliminating A r between these equations, we find d In P/AT = V^aK/RT. 
Therefore, by the analogy to the Clausius-Clapeyron equation, the net 
heat of adsorption in the immediate vicinity of saturation is VoctKT. 

To prove that this is identical with heat of compression, let us return 
the system to its second, unsaturated state at the original temperature 
and calculate what heat of compression would be evolved from the liquid 
present, upon replacing the liquid originally removed. By a well-known 
thermodynamic relation, the heat of compression of a portion of fluid is 
proportional to its volume, temperature, and expansion coefficient. Mul
tiplying these quantities by the value of Ap already obtained, we find for 
the desired heat the expression VoaTpKAv. Dividing by AiV, we obtain 
for the molar heat V0aKT, a quantity identically equal to the net heat of 
adsorption just calculated. Here, then, is the explanation of the puzzling 
fact that the heat required to evaporate a liquid from a saturated adsorbent 
is greater than from the pure liquid, although the vapor pressures and, 
therefore, presumably the forces which have to be overcome by escaping 
molecules, are identical. The additional heat is absorbed by the ex
pansion of the remaining liquid when released from the weight of that 
which evaporates. 

Turning to the experimental field, we find many facts which seem to be 
inconsistent with the high-pressure theory. The original argument from 
net heats of adsorption was based on comparisons between different liquids 
measured at their normal densities. But if they are under high pressure, 
the quantities chosen for comparison should be those which under high 
pressure occupy the same volume. This change will alter the results. 

The pressure existing in the adsorbed layer, according to Polanyi's 
theory, is much less than that required to account for the whole heat as 
heat of compression. It rarely exceeds 5000 atmospheres. The capillary 
condensation theory denies the existence of any pressure at saturation. 

I have previously shown1 that adsorbed benzene does not freeze, even 
below its freezing point. If it were in the form of ordinary liquid under 
pressure, it would freeze at ordinary temperatures. 

The most interesting evidence, however, because most closely related 
to that of Harkins and Ewing, is that obtained by comparing the saturat
ing quantities of the same liquid at different temperatures, rather than 
of different liquids at the same temperature. McGavack and Patrick's 
work on silica gel agrees with mine on charcoal in showing that if the 
decreasing capacity of the adsorbent with rising temperature is due simply 
to the expansion and overflowing of the adsorbed liquid, then this expan
sion is about the same as that of the free liquid, and is much greater than 
that of the liquid under 37,000 atmospheres' pressure. In Table II, 
the column marked "adsorbed" gives the ratio of the amounts of different 
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vapors adsorbed at the lowest and highest temperatures at which I was 
able to reach saturation, and the column marked "free" gives the ratios of 
normal liquid densities at the same temperatures. There is some tendency 
for the "adsorbed" expansion to be less than the "free," but inspection of 
Bridgman's16 work shows that in no case would this correspond to a 
pressure as high as 500 atmospheres. 

TABLE II 

EXPANSION OF F R E E AND ADSORBED LIQUIDS 
Substance 

Benzene 
Ether 
Carbon disulfide 
Methanol 
Water 

Temp, range, 0C. 

33-99 
0-60 
0-60 
0-60 
0-99 

Adsorbed 

1.065 
1.09 
1.07 
1.08 
1.05 

Free 

1.09 
1.11 
1.08 
1.07 
1.04 

The case of water is particularly instructive. The expansion of adsorbed 
water proceeds regularly from 0° to 100°, with no suggestion of a change 
of sign. 

To sum up, then, comparisons between volumes of different liquids ad
sorbed at one temperature appear to support the high-pressure theory, 
while those between volumes of one liquid at different temperatures point 
to the no-pressure or capillary condensation theory. While each of these 
generalizations has been separately recognized by various authors, the 
antagonism between them seems to have escaped notice. In order to 
reconcile the facts, it is necessary to abandon either the idea that all liquids 
fill the same space, or the idea that every portion of the adsorbed vapor 
is in a state identical with that of its massive liquid under some particular 
pressure. I prefer the second alternative for the following reasons. 

The properties of a liquid are determined by the forces acting between 
its molecules. In order to exhibit normal properties, any portion must be 
surrounded to a distance at least equal to the radius of action of intermo-
lecular forces, by an envelope of similar molecules of the same concentration 
as exists in the massive liquid. Now I have already given my reasons for 
believing that every adsorbed molecule (except those at the surface when 
saturation is reached) is near enough to some portion of the absorbent to 
be under its direct influence. Unless we are to make the unlikely assump
tion that the forces between adsorbent and adsorbed molecules have a 
much greater range than those between adsorbed molecules themselves, 
this cannot occur unless the adsorbed molecules sacrifice some of their en
veloping similar molecules. In other words, the adsorbent should alter the 
behavior of the adsorbed liquid not only directly by its own attraction, but 
also indirectly by displacing and removing the attraction of very intimate 
portions of it. This amounts to dilution, and we are therefore brought 

16 Bridgman, Proc. Am. Acad. Arts Sci., 49, 1 (1913). 
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back to Homfray's17 original point of view, from which an adsorption system 
appears so intimately mixed as to constitute a single phase—a solution. 
(Her thermodynamic treatment, however, is erroneous and misleading.) 
The lowering of the vapor pressure and freezing point, and the suppression 
of the anomaly in the expansion of water, are in complete accord with this 
view. Solutions of this class are peculiar in that one component is unable 
to diffuse, so that the concentration is not uniform throughout, but has all 
possible values. If the adsorbent be considered the solute, then the con
centration will be zero at the surface at saturation, and the surface layer of 
liquid will be in every way normal; in every other portion, the properties 
of the liquid will be more or less modified, according to laws which will not 
be more simple than those applying to ordinary concentrated solutions. 

This conclusion will make necessary a revision of the ideas expressed in 
the first part of this paper, but will not vitiate their general validity. The 
Polanyi theory must be modified, since we can no longer grant its funda
mental assumption that the liquid obeys its normal equation of state. 
In particular, the method of calculating the potential from the relative 
pressure will not do. The true potential will, however, approach the 
apparent potential thus calculated, as the system approaches saturation 
and the surface layer becomes normal. The reasoning advanced to explain 
the finite volume derivative of the true potential at saturation will still 
serve to make intelligible the corresponding finite, but different, deriva
tive of the apparent potential, and therefore of the observed isotherm. 
The interpretations of heat of wetting as heat of compression, need not be 
altered, since no assumption was made concerning-the state of the liquid 
save that the surface layer is normal at saturation. 

I t remains to find an explanation of the fact that observed net heats 
of adsorption do run parallel to heats of compression—that is, to expansion 
coefficients. The latter are approximately inverse measures of the work 
which has to be done in separating molecules of different liquids. We have 
just seen that such separation probably occurs during adsorption. The 
necessary work must be subtracted from the direct work done by adsorbent 
on the individual adsorbed molecules, in calculating the total energy change 
or the net heat, which would, therefore, tend to decrease, as observed, with 
decreasing expansion coefficient. This is well illustrated by the case of 
water, with its very low expansion coefficient, high surface tension, etc. 
The net heat of adsorption of water, calculated from the isosteres under 
such conditions as to be comparable with those previously given (1 cc. of 
liquid on 10 g. of charcoal, as in Col. 5, Table VIII of the Lamb and Coolidge 
article18) is only about 22 calories, while the average for the organic liquids 
was 88 calories. Mercury is not adsorbed at all. This is presumably not 

17 Homfray, Z. physik. Chem., 74,129 (1910). 
18 Ref. 13, p . 1164. 
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because there is no attraction between carbon and mercury atoms, but 
because this attraction is insufficient to separate the mercury atoms from 
each other. Similar considerations might be invoked to explain the 
differences in the adsorbabilities of other liquids. Portions of the ad
sorption volume might be supposed to be accessible only to single mole
cules of liquids like ether, which are easily able to detach themselves from 
their fellows. Speculations of this nature would best be postponed until 
data are at hand covering, for a single adsorbent, liquids with a wider 
range of properties. On the accumulation of such data I am actively 
engaged. 

Summary 

Adsorption isotherms are observed to exhibit changes of slope at satura
tion so sharp as to suggest the appearance of a new phase. This interpre
tation is at variance with most theories of adsorption, and another is to be 
desired. 

The "capillary condensation" theory is examined and found quite in
adequate to account for the facts except with the aid of ad hoc assumptions. 
In particular, it predicts temperature coefficients much greater than those 
observed. It must, therefore, be supposed that all adsorbed molecules 
are directly attracted by the adsorbent. 

The conditions are discussed under which the action of forces which are 
continuous functions of the distance can nevertheless give rise to potentials 
which are discontinuous functions of the volume occupied by the adsorbed 
gas, thus explaining the observed breaks in the isotherms at saturation. 

The relation between heats of adsorption and slopes of the isosteres is 
discussed. Published objections to the application of the equation of 
Clausius and Clapeyron are examined and found invalid. The equation 
is tested by experimental data, and found to be satisfied within a few 
per cent.; an explanation of the residual discrepancy is offered. 

The origin of the heat of adsorption is discussed. I t is concluded that 
the earlier conception of this heat as heat of compression, is in general 
erroneous, but may be correct for a saturated system. For unsaturated 
systems, the heat is to be considered as principally representing the work 
done by the attraction of the adsorbent, plus the ordinary latent heat of 
condensation. 

The evidence for and against the existence of a high pressure due to 
adsorption is examined. The evidence is found incapable of being recon
ciled with the idea that the adsorbed liquid obeys its ordinary equation 
of state. It is concluded that the liquid must be thought of as fundamen
tally altered in state, as in the case of ordinary solutions. The advantages 
of treating adsorption as a special kind of solution are discussed. 
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